[image:]Myth #1: Pipeline Improves Quality

[image:]
Developer Roadmap

Strategy #1: Safeguarding
bit.ly/safeguarding-steps
	How would you implement safeguarding?

	

	What impediments do you need to solve?

	

	What action is needed to remove impediments?

	

Strategy #2: Refactor Scary Code

	What has blocked you from refactoring this code already?

	

	How can you address those blocks?

	

	What small changes can you do to make it less scary?

	

Strategy #3: Increase Discipline

	Watch Arlo Belshee’s DeConstruct Talk
https://www.deconstructconf.com/2017/arlo-belshee-i-find-bugs-too-boring-to-write

	What tools do you have for disciplined refactoring?

	

	How could you make your refactoring safer?

	

Leader Roadmap

Strategy #1: Empower Devs

	What do you believe is stopping your devs from refactoring?

	

	How would you validate or invalidate your assumption?

	

	Assuming you’re right, how would you fix it?

	

Strategy #2: Safety Culture

	Watch ALCOA’s Safety Video
Replace aluminum with code.
Replace injury with bug.
https://nyti.ms/2jRMI7s

	How could you establish this habit at your company?

	

	What actions or systems are you perpetuating that might block safety?

	

	What are the indicators that will demonstrate significant culture change around bugs?

	

	
[image:]Myth #2: Pipeline Helps Me Recover Quickly

[image:]
Developer Roadmap

Strategy #1: Acceptable Bug Definition

	What indicators will tell you it is time to narrow the set of bugs you “won’t fix”?

	

	 How could you notice the unseen costs of the bugs you are currently not fixing?

	

	What processes should you change or remove when narrowing the “won’t fix” bugs definition?

	

Leader Roadmap

Strategy #1: Safety Definition

	Assuming safety culture for bugs from Myth 1 is established, what are other risks to consider for safety?

	

	How can you leverage the safety culture you’ve built for bugs to address these additional risks?

	

[image:]Myth #3: Invest in Tools

[image:]
Developer Roadmap

Strategy #1: Refactoring Mentor

	Who do you know who has refactored untested code well?

	

	If you don’t know anybody, inquire in the Legacy Code Rocks slack channel.
https://www.legacycode.rocks/community

	

	What problems do you need to know how to solve?

	

Leader Roadmap

Strategy #1: Technical Skills Roadmap

	Which experienced developers can tell you the sequence of skills you need on your roadmap?

	

	Do you have the people necessary to make a center of technical excellence?

	

	What gaps do you need to fill with hiring or consultants?

	

[image:]Myth #4: Prioritize Adding Unit Tests

[image:]
Developer Roadmap

Strategy #1: Code Issue Visibility

	How do you currently hide technical waste from managers and others?

	

	What is the source of the unsafety that causes you to hide it?

	

	What would you need to feel safe?

	

	If you felt safe, what would you do to make the code problems visible to the entire organization?

	

Strategy #2: Prioritization

	What do you need the manager to do that shows that the code problems are a real priority?

	

	If the code problems are a real priority, what would be your actions?

	

	What benefits do you expect those actions to give the company in what timeframe?

	

Leader Roadmap

Strategy #1: Alignment

	Who are the right leaders for the “fix the ugly code” project?

	

	What structural support would they need to make that project succeed?

	

	How do you change annual review to make this priority clear?

	

Prioritization Matrix

	Priority
	Myth
	Strategy
	Action
	Timeframe

	[choose level 1, 2, or 3]
	[choose 1, 2, 3, or 4]
	[choose 1, 2, or 3]
	[write your specific action]
	[write your personal due date]

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

image1.png
it

image2.png

